
www.rigado.com info@rigado.com

Whitepaper

Introduction
This white paper discusses IoT security at scale and shares
some of the experiences Rigado has had working with
over 300 clients and 5 million connected devices helping
them manage end-to-end security of IoT gateways in
commercial IoT applications.

Almost all IoT project teams follow similar DevOps
practices for cloud-based continuous integration and
deployment. However, when developers are focusing on
building their application that gathers, for example, the
guest experience data for their IoT application, they are
not spending enough time dealing with ongoing security

Threat Models & Mitigation
Let’s begin by looking at something we are possibly more
familiar with, data centers and public cloud. In the data
centers and when using public clouds they typically
have enough resources to use VMs or containers to
separate workloads and reduce risk. They usually have
excellent physical security such as keycards, which limit
the personnel who can access the data center. Network
security is also very good; software-defined networking
provides limited access to different hosts or ports.
Also, there is a wide variety of performance monitoring
anomaly detection tools available. Overall, when working
in a data center and/or a public cloud, developers look
to the cloud provider to solve most of these security
problems. Many of the developers moved to the cloud for

IoT Security at Scale Managing end-to-end security
for commercial IoT gateways

patches. This creates a huge security problem for these
teams and the solutions they build.

Fortunately, there are mitigation techniques and
solutions in the form of a platform they can build on that
includes regular patches and automatically updated
security infrastructure. Before settling on a specific
solution, developers need to know as much as possible
about the threat models associated with IoT Gateways
and IoT devices, and some of the methods used to
prevent or mitigate those threats.

that reason, assuming that adequate security measures
were already in place.

www.rigado.com info@rigado.com

IoT Security at Scale

By contrast in IoT, the various use cases and
environments demand their own specific solutions.
For example, consider the security requirements of a
chain of hotels. Deploying IoT devices into hundreds or
thousands of rooms drives down the budget available
for hardware resources like processor and RAM that can
be deployed on these devices, which are used to support
multiple different simultaneous applications like guest
experiences, monitoring the minibar, integrating with
HVAC, or controlling the lighting. In the hotel room there
is no physical access control other than the gateway is
hidden in the ceiling, behind a wall, or inside a container
of some sort.

The environment of a public data center is very different
from that of the hotel rooms and warehouses, conference
rooms and commercial buildings, where IoT devices are

typically deployed. Each has its own set of threats that
must be dealt with based on system defenses that can be
constrained by small amounts of RAM or slow processor
speeds.

There are many different threats to IoT edge devices. For
example, there is the problem of the “nosy neighbor”
which is a play on the common multi-tenant problem of
“noisy neighbor” only is more concerned with security
than resource hogging. In the cloud there are always
many different applications running together on a single
piece of hardware. We need to provide the same security
solution in IoT wherever we’re multitenant – however
we have limited resources, so we need a low-cost
solution that will be effective for creating similar virtual
environments, confinement, and security.

We also have to be cognizant of physical attacks since
that gateway and/or the IoT device might be accessible.

A malefactor could tamper with these controls to change
the behavior of the application. They could crack open
the device and actually steal some of the information
stored inside, such as API keys, or other IP. Like many
cloud applications, we worry about someone exploiting
the software bugs that are on these devices to create
some sort of remote execution. There are a lot of stories
about botnets and other IoT devices being used as a
vantage point for attackers to launch denial of service
attacks, mine crypto currency, or other clever ways that
attackers can devise to take advantage of IoT devices.

IoT Edge Device Security Threats

www.rigado.com info@rigado.com

IoT Security at Scale

Confinement
In multi-tenancy situations, the threat is that there are
other unauthorized software and applications on the IoT
device. These problems have been solved in the cloud
and in VMs with containers. But on small, resource-limited
IoT devices the overhead of running a VM is untenable.
Even using containers like LXD drives up memory and

CPU usage, while adding to networking complexity
with elements like bridges or VLANs. Meanwhile the IoT
applications need to interact with non-network interfaces
like BLE or serial and require highly granular permissions
to function properly.

At Rigado, we’ve picked Snaps for our application
confinement to solve these problems because it limits
app permissions using AppArmor Seccomp, cgroups
and namespaces. It behaves as if you are running
an application on the familiar Ubuntu Linux system.
Confinement keeps the OS files safe from the application.
Even though it runs the daemons as root, it doesn’t give
access to modify elements like the /etc/ directory or any

of the kernel or other files systems that are outside the
application. It defaults to limiting access. For example,
you can allow access to the dbus interface to talk to Bluez
for Bluetooth, but at the same time disallow access to
manage Wi-Fi configuration over this same dbus interface.
Snaps also keep everything needed to run the application
together. The libraries and the run times are all together,
which makes those stacks easier to manage and update.

www.rigado.com info@rigado.com

IoT Security at Scale

With the confinement limiting access, capturing and
reporting security events are critical for security at scale.
Imagine for whatever reason that app is compromised,
reporting that it is trying to execute, even if it’s failing –
it may be trying to access privileged paths or resources
on the IoT device. Receiving notification of that policy
violation will essentially allow you to do early detection
and remediation of any issues –- you can only do that if

you have strong confinement along with strong access
controls and granular permissions on these devices.
The reasons for confinement really aren’t different than
the reasons for containers in the cloud – you have a
predictable, repeatable and immutable infrastructure.
However, on these edge devices where resources are
limited, we need a slightly different mechanism that has
much lower overhead.

Tampering by Physical Attacks
Another class of threats that are important to consider
when designing an IoT device are the physical attacks
can actually be made on that device. An important one
is tampering with the device to change its behavior. A
malefactor could modify the code that’s running on
a physical device so that it might act as a “man in the
middle.” Imagine a system that’s checking for usage
and providing that information for billing purposes. If
an attacker can access and modify the code, he could
change the amount that is reported. Or he might decide
to siphon off personal data and hold that for ransom.
Attackers might also be able to mine crypto currency
using the resources that you have placed in these IoT
devices.

When the attacker takes apart one of these IoT devices,
he should not be able to plug serial cable into a header
on the PCB and have root access. We have seen this
configuration in several production commercial devices
and it is always amazing – a prime example of worst
practices. So, your first check box should be to make
sure there is no open debug console on the device. This
is very, very important. If there is a terminal, often there’s
a good reason to have a serial interface on the device for
activities like debugging.

Don’t employ a username and password combination
on the device that uses defaults. This practice is probably
one of the biggest contributors to the proliferation IoT
botnets that are out there with user devices. It’s better
to have a managed system delivering configurations
remotely than having any kind of a default user name
and password that users should change when they
install. Our experience is that this hardly ever happens.

If the purpose of these physical attacks is to actually
change the behavior of an application, there are
remedies. One way to combat the attack is to make
sure that the app can’t be changed when we use snaps.
These are essentially read only file systems that prevent
someone from tampering with the code bits on a device

www.rigado.com info@rigado.com

IoT Security at Scale

Secure Boot
How does a secure boot work? Deep in the processor
there is a first stage bootloader with a set of fuses that are
permanently burned with a public key. The key provides
public use for verifying the second stage bootloader.
The first stage loads the second stage from the external
flash and computes its signature; it then compares the
results with the public key before starting the execution.
If that succeeds, the second stage will perform the same
loading of the kernel from external flash and continue
loading all the way up to the apps. Suppose, for example,
someone takes the Cascade Gateway off the wall and
tries to tamper with the files in the flash chip in order to
introduce new behavior. The secure boot process simply
prevents the system from booting if those changes
were made all the way down to these layers of the OS.

There are a lot of keys here and so it’s important to note
that their management is fairly complex. Fortunately,
Canonical (the company behind Ubuntu Core) handles
the kernel signing keys through a workflow and a process
that Canonical maintains.

Rigado takes that public key and makes it into our second
stage bootloader. Workflows are used to sign that second
stage and protect our keys. At that point, only assets that
are actually transferred to the factory where everything
is loaded contain public information. Since setting up
those workflows is non-trivial, many well-intentioned
IoT projects skip over setting them up correctly. This
jeopardizes the entire security of an IoT process because
a secure boot is the root of trust for any commercial IoT
security at scale. Because that is so important Rigado has
decided to do that for every one of the gateways that we
deploy by configuring them in the factory with the secure
boot process.

and instead would entail replacing the entire snap.
Security is built in layers. Even if we don’t allow console
access, we still want to prevent something like an attack
designed to replace an authentic snap with one that’s
loaded with malware.

Fortunately, Ubuntu Core has a strong trust model that
uses SHA384 signatures to validate OS and applications
as they’re installed. Verifying the application boils

down to having a signature that the system can verify. It
does that by holding a copy of the public key and then
making sure those match. And there is a whole chain of
verification that that public key has in fact been signed. If
we follow that signature path all the way back eventually
we end up at the kernel. We want to make sure that the
kernel has been verified before it’s run – the mechanism
that we use on our IoT gateways to accomplish this is a
secure boot.

Secure boot is the root of trust
for any commercial IoT security
at scale.

www.rigado.com info@rigado.com

IoT Security at Scale

Protecting Intellectual Property
Another physical attack threat to IoT devices requires
protecting the IP – the intellectual property – and any of
the assets like API keys or configurations that actually live
on that device at the edge. Gateways and applications
need those credentials to start conversations up to the
cloud and down to the devices. But if intruder can, for
example, hack a Raspberry Pi by pulling out a micro SD

Encryption
One of the strategies for IOT security we considered was
the provision of a set of encryption libraries. The chipsets
inside the gateway provide encryption allowing us to
deliver a set of libraries that each application can use to
protect sensitive information.

Secrets Management
When delivering an application, often it is tempting to put
something like an access token directly in the code. But
to maintain IoT security at the edge, we definitely need to
consider not putting those credentials directly in the app

card and put it into a computer, they can browse through
the files on that filesystem as easily as looking at the
pictures from their summer vacation taken by a digital
camera. When the application that is being written is in
something like Python, NodeJS or Java, or interpreted
languages that are all written in plain text, your precious
IP there at the edge is very vulnerable.

But we ultimately decided not to do that for two reasons.
The first is that this approach might protect elements
like a credential or a configuration, but it typically
doesn’t protect the entire application – for example the
entire Python application or NodeJS application. And

code. It’s best to use a service or a secrets management
tool of some kind to deliver those secrets to the device
when it’s running instead of passing it through an entire
CICD pipeline where there’s a lot more exposure.

Some security do’s and don’ts:

• Don’t put credentials into the app code

• Credentials should be unique for every device

• There should be no default usernames and passwords for the device itself. Even at the application level it is a
security best practice to keep each one of the devices credentials unique.

• In order to keep those credentials unique, assuming there’s there is a mechanism like a secrets management
service that can deliver that secret to the device, it still probably needs to be stored on the disk.

• When it’s on the disk there is still the risk that an attacker will be able to read it out of the flash filesystem. So,
we’ve considered several different mechanisms for encrypting.

www.rigado.com info@rigado.com

IoT Security at Scale

the second reason is that introducing something like a
library or utility for encryption would require that every
application be modified.

That kind of friction is the enemy of security when we’re
talking about building IoT at scale. We want to make it
extremely easy for every one of our customers to migrate
their applications to Cascade. This means that if they
started doing development on a laptop or a Raspberry
Pi, we don’t want to make them stop and use a special
configuration utility to be able to take advantage of
encryption on these devices.

The way to solve this problem is to provide encryption
for the entire file system so that it encrypts and protects
the entire app, including: all of the code; all the configure
information; and all the credentials that might be stored
alongside them. This is accomplished using that secure
boot process mentioned above.

This approach ensures that we can trust the software
we are running. This trust allows us to provide access
using a secret key that’s buried deep inside the
processor. So again, when the second stage bootloader
is authenticated, there is a crypto key that can be passed
into the kernel so that entire encrypted file system can be
unlocked and used.

This is a little different than the usual approach.
Encrypted file systems in Ubuntu have been available
for a while. However, a lot of those systems depend on
a human entering a pass phrase during boot or plugging
a USB stick into the device during the boot process.
Because we can take advantage of a secure boot, we can
allow this mechanism to be used in the field without any
human interaction. This solves tampering or changing
application issues and solves security for the encryption
of configuration credentials. This solution is very
important for devices that have physical access exposure,
which allows an attacker to get their hands on them.

But these are not the only threats that IoT devices have
to withstand. Most of the previous threats focused on
motivated attackers with physical access. But the scariest
attack is the one in which the attacker can remotely
turn an IoT device into a botnet because of a software
vulnerability.

High Profile Vulnerabilities
There have been numerous high-profile vulnerabilities
over the last few years – from Meltdown and Spectre,
which may not be as appropriate or applicable to gateway
devices – to vulnerabilities like Heartbleed, BlueBorne
attacking the Bluetooth connectivity, or Krack which

attacked the WPA2 Wi-Fi encryption. Huge numbers
of vulnerabilities happen every month – for example,
something like 1800 new CVEs (Common Vulnerabilities
and Exposures) were filed in June 2018.

www.rigado.com info@rigado.com

IoT Security at Scale

Given this high level of activity, the most important
factor in IoT security at scale is the automatic application
of frequent security patches. That’s difficult to do
when the system does not have a clean separation.
Fortunately, with Canonical’s Ubuntu Core the snaps
provide a good clean separation of the OS, the system
and the applications, allowing them to be updated
independently. For example, Rigado and Canonical are
providing kernel updates to the Cascade system on a
cadence of about one update every three to four weeks.
Critical patches for high-profile vulnerabilities can be
delivered faster, as necessary.

It is extremely important to implement automatic
updating that is independent of the app feature releases.

Think about a team
that is working very
hard on a regular basis
having to cope with
a feature release or
a product team that
is pushing to layer
in new features also
having to do hot fixes
or implement special
releases for security issues. These are not practices that
most teams take time for. Therefore, finding a mechanism
at scale that automatically handles these special security
releases and OS updates is a priority item.

Monitoring is Key
No security is perfect. If you have a vulnerability that is not
patched, a malefactor could potentially take advantage
of the system or an application remotely. Preventive
measures are not enough – monitoring is also important.

At scale, centralized application performance monitoring
can identify critical issues.

For example, take a situation where CPU performance
was nominal – 10% or less – and then it spiked to 80-
90% percent for some reason. These sorts of anomalies
need to be flagged so that an attack underway can be
discovered quickly and a remediation plan developed
immediately. There is also a need for some sort of
centralized logging so that when you see a big spike in
CPU, memory or network bandwidth, or you start having
anomalies regarding which hosts the device is talking
to, logging can help you go back, look through what’s
going on, understand where an issue might have been
introduced and understand the scope of that breach.
Because security isn’t perfect, it’s good to have the tools
on hand that can help you deal with issues when they
come up.

IoT Security at Scale

www.rigado.com info@rigado.com

influenced our decisions to use snaps and collaborate
with Canonical to provide confinement that works on
our resource limited systems. The partnership also gives
us continuous security updates. These important factors
play an essential role in helping us mitigate the threats to
IoT security at scale.

End-to-End Security for your for IoT Edge Infrastructure

Gateways are created
with a secure ID and
encrypted key at the

point of manufacture.

Initial programming &
all future updates are

signed & verified for run-
time protection.

All application run in
secure containers, on

an encrypted OS &
filesystem.

Regular security
patches are tested &

published by Rigado as
new risks emerge.

The issues discussed above have had a major impact
on how Rigado developed one of the core pillars of its
Cascade product, Edge Protect. It includes mechanisms
from the hardware and manufacturing process with
secure boot and provides you with all the security features
enabled on our gateways. The issues discussed also

Conclusion
IoT security at scale is not layered in as an afterthought.
It is a foundation built on a root of trust that uses
confinement, signing, and encryption. It’s an ongoing
process with continuous security updates and active
monitoring.

Ubuntu Core takes a security-first approach, which is why

we chose it for the foundation of our Cascade platform
and the background of our Edge Protect feature on
Cascade. Edge Protect provides end-to-end security for
IoT edge infrastructures. It’s an essential part of Rigado’s
mission to provide our customers with advanced
technology that allows them to quickly develop and
deploy reliable, secure IoT solutions.

Bringing It All Together, Edge Protect

